3.250 \(\int \frac{1}{\sec ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=169 \[ \frac{2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}+\frac{26 \sin (c+d x) \sqrt{\sec (c+d x)}}{15 d \sqrt{a \sec (c+d x)+a}}-\frac{2 \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a \sec (c+d x)+a}}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d))
 + (2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) - (2*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*
x]]*Sqrt[a + a*Sec[c + d*x]]) + (26*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.34495, antiderivative size = 169, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3823, 4022, 4013, 3808, 206} \[ \frac{2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}+\frac{26 \sin (c+d x) \sqrt{\sec (c+d x)}}{15 d \sqrt{a \sec (c+d x)+a}}-\frac{2 \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a \sec (c+d x)+a}}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d))
 + (2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) - (2*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*
x]]*Sqrt[a + a*Sec[c + d*x]]) + (26*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]])

Rule 3823

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(Cot[e
+ f*x]*(d*Csc[e + f*x])^n)/(f*n*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[1/(2*b*d*n), Int[((d*Csc[e + f*x])^(n + 1
)*(a + b*(2*n + 1)*Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b
^2, 0] && LtQ[n, 0] && IntegerQ[2*n]

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 4013

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sec ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}} \, dx &=\frac{2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{\int \frac{a-4 a \sec (c+d x)}{\sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}} \, dx}{5 a}\\ &=\frac{2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{2 \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}-\frac{2 \int \frac{-\frac{13 a^2}{2}+a^2 \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}} \, dx}{15 a^2}\\ &=\frac{2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{2 \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{26 \sqrt{\sec (c+d x)} \sin (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}-\int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{2 \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{26 \sqrt{\sec (c+d x)} \sin (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{\sqrt{a} d}+\frac{2 \sin (c+d x)}{5 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{2 \sin (c+d x)}{15 d \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}}+\frac{26 \sqrt{\sec (c+d x)} \sin (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.08245, size = 117, normalized size = 0.69 \[ \frac{\frac{15 \sqrt{2} \tan (c+d x) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{\sec (c+d x)}}{\sqrt{1-\sec (c+d x)}}\right )}{\sqrt{1-\sec (c+d x)}}+\sin (c+d x) (-2 \cos (c+d x)+3 \cos (2 (c+d x))+29) \sqrt{\sec (c+d x)}}{15 d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

((29 - 2*Cos[c + d*x] + 3*Cos[2*(c + d*x)])*Sqrt[Sec[c + d*x]]*Sin[c + d*x] + (15*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt
[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x])/Sqrt[1 - Sec[c + d*x]])/(15*d*Sqrt[a*(1 + Sec[c + d*x])]
)

________________________________________________________________________________________

Maple [A]  time = 0.212, size = 130, normalized size = 0.8 \begin{align*} -{\frac{ \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{15\,ad\sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( 6\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-15\,\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sin \left ( dx+c \right ) -8\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+28\,\cos \left ( dx+c \right ) -26 \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

-1/15/d/a*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(6*cos(d*x+c)^3-15*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/
2))*(-2/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-8*cos(d*x+c)^2+28*cos(d*x+c)-26)*cos(d*x+c)^3*(1/cos(d*x+c))^(5/2)/si
n(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 2.2817, size = 482, normalized size = 2.85 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/60*sqrt(2)*(60*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 5*cos(2/5
*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 60*cos(5/2*d*x + 5/2*c)*sin(4/5*a
rctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 5*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d*x + 5/2
*c), cos(5/2*d*x + 5/2*c))) - 30*log(cos(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5*
arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + 2*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x +
 5/2*c))) + 1) + 30*log(cos(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5*arctan2(sin(5
/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 - 2*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 1
) + 6*sin(5/2*d*x + 5/2*c) - 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 60*sin(1/5*arcta
n2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))/(sqrt(a)*d)

________________________________________________________________________________________

Fricas [A]  time = 2.05869, size = 926, normalized size = 5.48 \begin{align*} \left [\frac{\frac{15 \, \sqrt{2}{\left (a \cos \left (d x + c\right ) + a\right )} \log \left (-\frac{\cos \left (d x + c\right )^{2} + \frac{2 \, \sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt{a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt{a}} + \frac{4 \,{\left (3 \, \cos \left (d x + c\right )^{3} - \cos \left (d x + c\right )^{2} + 13 \, \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{30 \,{\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac{15 \, \sqrt{2}{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{-\frac{1}{a}} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{-\frac{1}{a}} \sqrt{\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + \frac{2 \,{\left (3 \, \cos \left (d x + c\right )^{3} - \cos \left (d x + c\right )^{2} + 13 \, \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{15 \,{\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/30*(15*sqrt(2)*(a*cos(d*x + c) + a)*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)
)*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a)
 + 4*(3*cos(d*x + c)^3 - cos(d*x + c)^2 + 13*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c
)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d), 1/15*(15*sqrt(2)*(a*cos(d*x + c) + a)*sqrt(-1/a)*arctan(sqrt(2
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d*x + c)) + 2*(3*cos(d*x + c)^3 -
cos(d*x + c)^2 + 13*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*
d*cos(d*x + c) + a*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(5/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)